
Mr. Stein’sWords ofWisdom

I am writing this review essay for two tests — the AP Stat exam and the Applied Stat
BFT. The topics are more or less the same, so reviewing for the two tests should be a
similar process. Either way, you are about to take a comprehensive exam. The AP exam
will probably be easier than our final, but regardless, you have a great number of ideas that
need to be up front in your brain.

That is the plain truth. While I hope this generates some degree of healthy nervousness in
you, it should not scare you. In a way, I think you should be looking forward to this test.
You are well prepared!!! You have studied every topic that will be tested. Your job will be
to look at some questions that initially may seem confusing to you and to figure out which
of the topics you know apply to that question.

1. The Forest and the Trees
I wanted to give you what I think are the important ideas of this course. These ideas make
up the forest. In doing so, I will leave out a lot of the details or what I call the trees. I am
not saying the details are unimportant. Obviously, without them you cannot solve some of
the problems. But I think most of you know most of the details (although some hard-core
studying over the next few days will surely help). I want to make sure that the big ideas
are front and center in your mind as you study for the last few days and go in to take your
exam.

2. Describing Distributions
Remember that if you are asked to describe a data set or, more likely, to compare two
or more data sets, you must always comment on center, spread, and shape. Center can
be expressed with the mean (for symmetrical, well-behaved data) or median (for non-
symmetrical or otherwise naughty data). Spread can be expressed with the standard
deviation (for symmetrical, well-behaved data) or IQR (for non-symmetrical or otherwise
naughty data). Make sure you do not represent a data set as NORMAL. It can be
approximately normal, but the normal distribution is theoretical only.
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Don’t confuse skewed left with skewed right. Remember “Skewness is Fewness”. Remember
that means and standard deviations are less resistant — they move towards outliers and
influential points.

Make sure your descriptions are in the context of the problem.

If the problem tells you a population is normally distributed, get out the normal table and
draw a sketch. If the problem is about sampling more than one individual you must use the
standard deviation of the sampling distribution, not the population (see the Central Limit
Theorem on page 6).

Know that a z-score is the number of standard deviations above or below the mean. Be
able to calculate z-scores, find probabilities given a z-score and find a z-score given a
probability.

Be able to make and describe a boxplot. Know what Q1 and Q3 are. Know that IQR =
Q3−Q1. Know the formula for determining outliers: The lower fence is Q1− 1.5IQR and
the higher fence is Q3 + 1.5IQR.

3. Regression
There are some basic terms that you should be prepared to identify and interpret:

• Slope — For every increase of one unit in x, there is a certain increase or decrease
in ŷ (in ŷ, not in y). It is how much our model predicts y will change with one unit
increase in x.

• y-intercept — What our model predicts when x is zero

• r — Correlation coefficient. Indicates the strength of the linear relationship. Beware
— r can mean nothing if the data is not linear to begin with.

• R2 (R-squared)— the percent of variation in y that can be explained by the regression
of y on x. The sum of the squares of the residuals from the regressions line are R2%
less than the sum of the square of the residuals from the mean line.

• Residual — y− ŷ. A positive residual means the line is underestimating that point, a
negative residual means it is overestimating that point.

Know the formula b = r Sy

Sx
. Understand the formula’s relationship to the idea of Regression

to the Mean. For an increase of one standard deviation in x, we predict an increase of
less than one standard deviation in y (unless, of course, r = ±1, but that’s not a real-life
possibility).

Regression is useful in determining the degree to which a response variable can be predicted
by an explanatory variable. It says nothing about whether an explanatory variable is
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causing a change in the response variable. To attempt to determine causation, you need to
perform a controlled experiment. Understand the role lurking or confounding variables can
play

The appropriateness of the linear model should be mostly determined by looking at the
data and looking at the residuals. Remember that r and R-squared do not measure how
linear the data is; in fact, they both assume linearity.

Don‘t forget that you when you are asked if there is a relationship between two quantitative
variables you should do a linear regression t-test (if they are categorical, you should do a
Chi-Square Test of Independence), Don‘t just stop with commenting on r or R-squared.

3.1. Transformations
This procedure is basically taking some clearly non-linear data, doing some mathematical
transformation on the x-data and/or the y-data to make it linear. We can then do
linear regression and finally undo the transformation. These transformations can be any
mathematical operation; two of the more common ones are power regression using the
transformation (log x, log y) and exponential regression uses the transformation (x, log y)

4. Experiment and Survey Design
Please know the difference between an experiment and an observational study. Experiments
require a treatment.

Know what a Simple Random Sample (SRS) is: A sample in which each group of size n has
an equal chance of being chosen. Know some other random sampling techniques: systematic,
stratified, multistage, etc.

Understand the difference between variation and bias. Do you remember the analogy of the
dart board? If you aim towards the center but don‘t hit it every time — that‘s variation!
If your aim is off and all your shots are going right, that‘s bias. Think about the different
types of bias (undercoverage, non-response, etc.) that we have discussed. Study their names
and, more importantly, what they mean.

Understand that if asked to carry put an experiment you must include (in detail) random-
ization, control, and replication. Be sure that you leave nothing the grader‘s imagination.
Make sure to discuss how you will analyze the results. If you are not asked to mention
a specific hypothesis test, then at least mention which results will be compared. Be very
clear on the concept of blocking. We block to control for the variation caused by a variable
other than the one we are studying. We separate our sample into two or more blocks and
then essentially carry out multiple, identical experiments. We then compare results within
blocks.
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5. Probability
Know the multiplication and addition rules, which are respectively

P (A and B) = P (A) ∗ P (B | A)
P (A or B) = P (A) + P (B)− P (A and B)

Independence means that the outcome of one event will not affect the outcome of the
others or P (B | A) = P (B).

Disjoint (mutually exclusive) means that the two events cannot happen simultaneously.
More formally, P (B | A) = 0.

Be able to substitute to get special cases of the two general rules. For example, if A and
B are independent then P (A and B) = P (A)P (B). On the other hand, if A and B are
mutually exclusive (disjoint), then P (A and B) = 0.

Don‘t forget how to calculate conditional probabilities. First calculate the space, then ask
yourself (“self”), of these, how many meet some condition? Never forget that tree diagrams
can really help with some complicated probability problems, particularly conditional
probabilities.

Make sure that you clearly state your model: which digits represent which outcome, how
many digits you will take in each trial, how you will know when to stop each trial, and how
many trials you will perform.

6. Probability Distributions of RandomVariables
Know that a probability distribution consists of all possible outcomes and each outcome‘s
probability.

Definition 6.1
The mean (expected value) of a probability distribution X is the sum of each outcome
times its probability:

µX =
∑

xP (x).

4



Definition 6.2
The variance of a probability distribution X is denoted σ2

X and is defined by the
formula

σ2
X =

∑
(x− µX)2P (x).

The standard deviation σX of a probability distribution is the square root of the
variance.

Note that we can, with some arithmetic, calculate µ and σ for discrete probability distribu-
tions.

6.1. Rules for CombiningMeans and Standard Deviations
In general, means behave exactly as we would expect, while standard deviations can be a
little trickier. Let X and Y be random variables and let a be a constant. The following
relations hold:

Rule for µ Rule for σ
µX+a = µX + a σX+a = σX
µaX = aµX σaX = |a|σX

µX±Y = µX ± µY σX±Y =
»
σ2
X + σ2

Y if X, Y are independent

Pay close attention to the last formula, known as the Pythagorean Theoremof Statistics (it
is the basis for the two sample z and t tests). When adding X and Y , if X and Y are not
independent, the standard deviation of X and Y will go in the direction of the correlation;
it will be higher if X and Y are positively correlated and it will be lower if X and Y are
negatively correlated. The opposite is true if X and Y are dependent. In fact, the actual
theorem is σ2

X±Y = σ2
X + σ2

Y ± 2rσXσY .

6.2. Binomial and Geometric Random variables
Definition 6.3
The binomial distribution is defined by P (X = x) =

Ä
n
x

ä
px(1 − p)n−x with x an

integer. The mean and standard deviation of the binomial distribution are given by
µX = np and σX =

»
np(1− p), respectively. Typically we also define q = 1 − p, so

P (X = x) =
Ä
n
x

ä
pxqn−x and σX = √npq.
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Definition 6.4
The geometric distribution is defined by P (X = x) = pqx−1. The mean and standard
deviation are given by µX = 1

p
and σX =

√
q

p
, respectively.

Make sure you can identify the binomial and geometric settings. They both have either
success or failure, independence, and the probability of success is always equal. Note that
success does not necessarily mean a positive outcome. It is up to you or the problem to
define what a success is. They differ in that binomial deals with how many successes in
a fixed number of trials, whereas geometric deals with how many trials until you get a
success. Be sure you can use the pdf and cdf features on your calculator. Pdf calculates the
probability of X taking on a specific x, while cdf calculates some X or less. To calculate
the probability of obtaining some x or more, you can use 1−cdf.

7. Sampling Distributions
Know the difference between a parameter and a statistic. A parameter is a numerical
description of a population; a statistic is a numerical description of a sample Understand
that a sampling distribution is the distribution of statistics from all possible samples
from a given population. In inference, we are using the mean and standard deviation (or
standard error if we are approximating). You need to know the following formulas for the
means and standard deviations of the sampling distributions of sample means and sample
proportions.

Rule for µ Rule for σ
µx = µ σx = σ√

n

µp̂ = p σp̂ =
»

pq
n

Remember, if you don’t know p or σ (a.k.a. real life), you will estimate them with p̂ or s
and calculate the standard error instead of the actual standard deviation.

7.1. CENTRAL LIMIT THEOREM
The Central Limit Theorem (CLT) says, in essence, that if the sample size is large enough,
the sampling distribution will be approximately normal and will in fact be normal as the
sample size approaches infinity.

This theorem is why we can calculate p-values and confidence intervals using a normal
probability table.
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8. Confidence Intervals
Be sure you completely understand the formula for a confidence interval.
In general, Confidence Interval = estimate± critical value · standard error.

Make sure you can find the critical value (z∗ or t∗) for any given confidence level with either
a chart, your calculator, or your memory.

Completely understand the interpretation of a confidence interval. We are 95% (or whatever)
confident that the true mean (or whatever) lies between # and #. If we take samples many,
many times, 95% (or whatever) of our intervals will capture the true mean (or whatever).

Be clear in your mind that is different than saying that the true mean has a 95% chance of
being in the interval or that this interval has a 95% chance of capturing the mean. The
parameter doesn‘t change, the intervals do.

Above all, remember to phrase this statement in context. Don’t just say true mean, actually
explain what that means.

Make sure you remember that assumptions must be checked on confidence intervals. Under-
stand that there are certain trade-offs with confidence intervals. The larger the confidence
level, the wider the interval. The larger n is, the narrower the interval. Make sure you can
calculate a minimum sample size given a confidence level and margin of error.

9. Hypothesis Tests
Keep in mind the logic of a hypothesis test. We are assuming the truth of the null hypothesis
and, if so, calculating the likelihood of this sample occurring. If the likelihood is low, we
will reject the null hypothesis; if it is not low, we will fail to reject the null hypothesis.

When deciding on which test go through the following decision process:

First, ask yourself (“self”), “Is the data categorical or quantitative?”.

1. Categorical

• One sample, two categories — One proportion z-test

• One sample, more than two categories —- Chi square (χ2) Goodness of Fit

• Two samples (or treatments), two categories — 2 proportion z–test

• Two (or more) samples (or treatments), more than two categories –– χ2 test of
Homogeneity

• One sample, two variables, more than two categories — χ2 test of Independence
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2. Quantitative — if you know the population standard deviation, you can use z-tests
for means, but this extremely unlikely, so you almost certainly should be using a t-test

• One sample t-test

• Difference between two independent samples — 2 sample t-test

• Difference between two linked samples — Matched Pair t-test

• Relationship between two samples — Linear Regression t-test

Make sure each of your hypothesis tests contains all of the following steps

1. Check (not just state) assumptions

2. Null and alternative hypotheses (H0, Ha, respectively)

3. Correct formulas with correct numbers filled in appropriately

4. p-value and decision

5. Interpretation in the context of the problem. Make sure this interpretation explains
the conditional probability that you have calculated.

There are some definitions that are very important for you to understand.

• p-value — The probability of getting results equal or more extreme as the sample
assuming the null hypothesis is true.

• p-value — The probability of falsely rejecting the null hypothesis.

• p-value — The probability of making a Type I error.

• Type I error — Rejecting the null hypothesis when it is true.

• Type II error — Failing to reject the null hypothesis when it is false.

• Alpha (α) — The probability of a Type I error.

• Beta (β) — The probability of a type II error.

• Power — The complement of β, or in other words, 1− β.

• Power — The probability of rejecting the null hypothesis when it is false.
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Keep in mind that there are some trade-offs here. The lower the alpha, or the significance
level, the higher the beta. We can lower beta (and raise power) without adjusting alpha by
increasing the sample size n. This requires more work on the experimenter‘s part, so that
also is a trade-off.

Be able to calculate beta for a given alternative value of the parameter (not an AP topic)
Here are all of the details of the various procedures and an example of a Minitab output. If
you want a more detailed treatment of the assumptions and their importance, refer to the
appendix.
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t-test 2-sample t-test Matched Pair t-test
Assumptions Check for SRS. Check

for independence.
Check if pop is nor-
mal, n is large enough,
or check the data

Check for two in-
dep. SRS’s or random
assignment of treat-
ments. Pops are nor-
mal, or n1 +n2 is large
enough, or check data.

Check for 2 linked
SRS’s or treatment on
same individuals. Pop
is normal, or n is large,
or check data.

Hypotheses H0 : µ = #, Ha de-
pends on question

H0 : µ1 − µ2 = 0, Ha

depends on question
H0 : µdiff = 0, Ha de-
pends on question

Picture Put H0 in the middle
of the sampling distri-
bution, shade from es-
timate: X

Put 0 in the middle,
shade from estimate:
X1 −X2

Put 0 in the middle,
shade from estimate:
Xdiff

Formulae and
Test Statistic

σx = s√
n
; tdf = x−µ

σx
σx1−x2 =

…
s2

1
n1

+ s2
2
n2
;

tdf = (x1−x2)−0
σx1−x2

σdiff = sdiff√
ndiff

; tdiff =
xdiff−0
σx

Conf. Interval x± t∗
(

s√
n

)
(x1−x2)± t∗

…
s2

1
n1

+ s2
2
n2

xdiff ± t∗
(
sdiff√
n

)

Notes To find t∗, use n − 1
for the degrees of free-
dom (df). If you know
σ, you can do a z-test.

For df, either use ex-
act value from calcula-
tor or use the smaller
of the df’s.

ALL work should be
done on differences.
Do not use the original
data.
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Linear Regression t-
test

1-proportion z-test 2-proportion z-test

Assumptions Check for SRS. Check
scatterplot (linear
model is appropriate).
Independence of data
(check residuals plot).
Standard deviations
of resids around LSRL
is constant (look
at residuals plot).
Residuals are normal
(check histogram, or
n is large enough to
apply CLT).

Check for SRS. Check
independence and
make sure pop size
is greater than 10n;
Check that np > 10
and nq > 10 to
approximate the sam-
pling distribution as
normal.

Check for two indepen-
dent SRS’s or random
assignment of treat-
ments. Check that the
pop size is greater than
10n for respective sam-
ples unless experiment.
Check that n1p1, n1q1,
n2p2, and n2q2 are all
greater than 10 to ap-
proximate each sam-
pling distribution as
normal.

Hypotheses H0 : β = 0, Ha de-
pends on question.

H0 : p = decimal be-
tween 0 and 1, Ha de-
pends on question

H0 : p1 − p2 = 0, Ha

depends on question

Picture Put 0 in the middle of
the sampling distribu-
tion, shade from esti-
mate: b

Put H0 in the middle,
shade from estimate: p̂

Put 0 in the middle,
shade from estimate:
p̂1 − p̂2

Formulae and
Test Statistic

se =
…∑

(y−ŷ)2

n−2 ;

SEb = se
sx
√
n− 1

;

t = b−0
SEb

σp̂ =
»

pq
n
; z = p̂−p

σp̂
p̂pool = n1p̂1+n2p̂2

n1+n2
;

σp̂1−p̂2 =
√

p̂q̂
n1

+ p̂q̂
n2

where p̂ = p̂pool

Conf. Interval b± t∗
Ç

se
sx
√
n− 1

å
p̂± z∗

√
p̂q̂
n

(p̂1 − p̂2)±
z∗
√

p̂1q̂1
n1

+ p̂2q̂2
n2

Notes df = n−2. You will al-
most certainly do this
from computer output.
Be familiar with out-
put (see page 13).

For confidence inter-
vals, assumptions and
SE have p̂ instead of p.

For assumptions and
SE formula, use p̂pool
for hypothesis tests
and p̂1 and p̂2 for con-
fidence intervals.

11



χ2 GOF χ2 Test of Indepen-
dence

χ2 Test of Homogene-
ity

Assumptions Check for SRS. All the
expected cells should
be greater than 5 (n
is big enough).

Check for SRS. All the
expected cells should
be greater than 5 (n
is big enough).

Check for SRS. All the
expected cells should
be greater than 5 (n
is big enough).

Hypotheses H0 : The data fits the
expected model. Ha :
It doesn’t.

H0 : The two variables
are independent. Ha :
The two variables are
related.

H0 : Proportions are
equal across differ-
ent samples. Ha :
Proportions aren’t
equal across different
samples.

Picture Put 0 to the left, shade
to the right of the χ2

statistic.

Put 0 to the left, shade
to the right of the χ2

statistic.

Put 0 to the left, shade
to the right of the χ2

statistic.

Formulae and
Test Statistic

χ2 = ∑ (O−E)2

E
E = Row Tot×Column Tot

Group Tot ;
χ2 = ∑ (O−E)2

E

E = Row Tot×Column Tot
Group Tot ;

χ2 = ∑ (O−E)2

E

Conf. Interval None. None. None.

Notes df =
# of categories− 1.

df = (R − 1)(C − 1),
where R and C are the
number of rows and
columns, respectively,
of the contingency ta-
ble.

df = (R − 1)(C − 1).
Note that the calcula-
tions for this test are
exactly the same as the
calculations for χ2 Test
of Independence. Both
tests go by the same
name “χ2” on the TI-
84 calculator
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10. Final Remarks
Here are some more general pointers for you:

• On the AP, do problem #1 first, it should be easy and straight forward. Then move
to question #6; it is longer and worth twice the points. It also may contain parts
that are not exactly what you have done before. You should be able to do these, but
they might require a little more thought. Then proceed to finish problems 2-5.

• Do not assume that you know what the test is asking you. Read the entire question
(all parts) and the answer choices before you answer. Pay attention to key words
(normally distributed, prediction, independence, null hypothesis, etc.).

• On multiple choice, use process of elimination. Focus on the difference between the
answer choices.

• Don‘t be scared off by long and wordy multiple choice questions. Usually several of
the answer choices are obviously incorrect. Focus on key words to decide between the
remaining choices.

• Do not skip multiple choice questions. There is no additional penalty for getting them
wrong.

• On part II, answer exactly what is being asked. Give solid statistical reasoning for
your answers. Use hypothesis tests, confidence intervals, regression, etc.

• When using formulas, write down the formula, show how the numbers are plugged in,
and then use the calculator to come up with the final answer.

• If you are running out of time, skip the calculations and include assumptions, Ho,
Ha, and conclusions. This will get you most of the points.

• Try not to leave any part II questions blank. If you don‘t understand what to do,
try to get at least one point. If you need an answer from a previous part which you
couldn’t do, make up an answer and continue with the subsequent parts

• Keep telling yourself (“self”): “I am well prepared. I have taken a rigorous college-level
statistics course. I know what I am doing. I just have to connect some piece of
knowledge in my head with the question in front of me.”

GOOD LUCK!
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A. Assumptions
Before we start talking about assumptions, you should know about sampling distributions.
This is the distribution that contains all of the statistic of interest when collected from
samples of a certain size. As a concrete example, suppose our population is all U.S. adults.
If we took a SRS of 500 of them and asked them if they liked cake, then the sampling
distribution would consist of the proportions from all possible samples of 500 U.S. adults.

The assumptions are arguably the most important part of the tests. Without the
assumptions, the tests are invalid. The calculations, while important, are easy to get a
handle of. Writing assumptions requires more care and practice.

Roughly speaking, there are three general classes of assumptions.

1. The NoBias Assumption — In an ideal world, we would know the parameters, always.
But we never know the parameters, so what do we do? We take samples, measure the
statistic, and then try to make an educated guess about the parameter. In fact, since
means behave as we would expect (pun intended), if there is no bias, the mean of
the sampling distribution is equal to the true mean. That is, µsampling distribution = µ.
When we talk about proportions this would be µp̂ = p; for means it’s µx = µ. But why
is this true? Simple: The definition of bias means a deviation from the parameter.

But how do we know if there’s no bias? Simple: We don’t. What we can do, is think
to yourself (self) and see if it’s reasonable to assume there’s no bias. The typical way
we approach this is to check if there’s randomization; usually a SRS is what we’re
looking for. Randomization reduces variation due to hidden variables, which is why
it’s important to check for no bias. But just because a SRS does not mean that it’s
reasonable to assume no bias. Nothing else in the problem statement should jump
out at you and scream “that’s bias”. Be on the lookout for the other types of bias we
already looked at.

2. The IndependenceAssumption — If the responses of our sample are not independent,
then we can’t reasonably make inferences. For example, if I was sampling a friend
group about whether they like a TV show, then independence could be violated since
the friends would likely influence each other’s opinions. If I wanted to characterize
the sampling distribution, this would be problematic.

Specifically, while the no bias assumption told us about the mean of the sampling
distribution, the independence assumption tells us about the standard deviation of
the sampling distribution. In particular, for proportions, we have that σp̂ = pq

n
. For

means, we have that σx = σ√
n
. The former is something we’ll be able to calculate by

directly using the null hypothesis in a hypothesis test, or estimate using p̂ and q̂ in a
confidence interval. The latter is more problematic; we usually don’t know σ, so we
have to approximate it with S. This has the unfortunate consequence of transforming
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an otherwise normal sampling distribution into a Student’s t-distribution. There is a
separate formula for Linear Regression t-tests: σb = se

sx
√
n−1 where se =

…∑
(y−ŷ)2

n−2 .

So, how do we check independence? Again, we won’t ever know for sure. But there
are things we should at least think about. For example, what if the sample size is
of comparable magnitude to the population size? Since most samples do not allow
replacement, this would have affect independence. Consider this example.

In any case, we need to make sure the sample size is small enough compared to the
population size for nonreplacement to have negligible effects on independence. How
small is small enough? We make an arbitrary cutoff at 10% with the so-called 10%
rule. If the sample size is less than 10% of the population size, then we can ignore the
effects of nonreplacement on independence. Of course, there is more to independence
than the 10% rule. You should make sure that the data are not related to each other
in an obvious way. If you are working with paired data, you have to instead check
that the differences are independent.

3. The NormalityAssumption— Almost all of the tests rely on the shape of the sampling
distribution being approximately normal. We care about this because it means that
we can more easily do calculations. So, how do we check that the shape of the
sampling distribution is approximately normal?

One way is kind of silly. If you somehow already know that the population is normal,
then certainly the sampling distribution is also normal. But that’s not the majority of
cases; in almost all cases you won’t know that the population is normally distributed.

If we’re doing hypothesis testing or creating confidence intervals with proportions, we
can use the “success/failure condition”. If the sample size is n and the proportion
is p, then the success/failure condition says that the sampling distribution of p̂ is
approximately normal if np > 10 and nq > 10. Note that this is an arbitrary cutoff,
and in general it’s better for both quantities to be significantly larger than 10.

So, what about means? Here, we have to appeal to the Central Limit Theorem. The
Central Limit Theorem states that as the sample size gets larger and larger, the
sampling distribution approximates a normal distribution, regardless of the shape
of the population. Again, larger is better, but we impose an arbitrary test for the
sample size being large. If n > 40, then we say that the sample is large enough for
the CLT to kick in. If 15 ≤ n ≤ 40, we need to look at histograms and check that it’s
symmetric and unimodal. If n < 15, n is too small to infer anything meaningful, even
with the histogram. Without more information about the population, it would be
dangerous to make an assertion about normality.

In any case, normality allows for ease of obtaining p-values and creating confidence
intervals. There are of course some caveats. If we are using means and do not know
the population standard deviation (which is almost always), the sampling distribution
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will end up being a t-distribution. However, we still need to check normality. If the
sampling distribution wasn’t already approximately normal if we knew the population
standard deviation, then the new distribution will not be a t-distribution.

The above three assumptions account for most of the tests except for χ2 and the linear
regression t-test. We never really went into detail about why we care about the
assumptions for χ2. The SRS assumption seems obvious enough, but how about the
expected frequency assumption? Roughly speaking, the reason we want E to be large
enough is so that χ2 isn’t inflated.

For the linear regression t-test, there are even more assumptions.

1. The Straight Enough Assumption — Does the scatterplot of the data look straight
enough to apply linear regression in the first place? Does the residuals plot not have
any obvious pattern? If we can’t justify using linear regression, making inferences
with this test is nonsensical.

2. The IndependenceAssumption— Are the data independent? Again, you won’t know,
but you should at least think about possible relationships. Check the residuals plot;
there shouldn’t be any appreciable pattern.

3. The Equal Variance Assumption/Does the Plot Thicken? (Homoscedasticity) — We
want to check that regardless of where we are on the line, the spread of the residuals
should be equal. Hence, “equal variance” (homoscedastic is just a fancy word for
this). If the residuals are roughly homoscedastic, then we can use one number to
approximate the spread around the whole line. In order to check this assumption, look
at the residuals plot. Are there any places where the variance is lower (or higher)?

4. The Normality Assumption We need to check that the residuals are normally dis-
tributed with respect to the line. Unless we know something extra, we usually do
this by checking the histogram of the residuals. Here, we can appeal to the CLT, if
n is large enough. Otherwise, the histogram of the residuals might be well-behaved
enough for us to reasonable conclude that the residuals are approximately normally
distributed around the line.

Remark
When performing the linear regression t-test, you need to have three pictures. The
first is simply the scatterplot of the data. The second is the residuals plot. Finally, the
third is the histogram of the residuals.
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